Cam Analyzer v4.3 Eng: 611 SAE Calculated Test Results

DELTA CAMSHFT THANKS FOR YOUR BUSINESS Performance Trends (C) 2018

This Report Printed: 10:47 am 07-01-22 Page: 1

										The State of	
Test Comn	nents:								-		
Report of:	Cyl 1, Can	n Data	Test Time:	9:28 am	01/11/201	19 Event	s Rate	d at .05'	" Tappet Lift		
CLin Int: 108. Exh: 110.	0 196.7	Open -8.2 27.1	Close 24.9 -13.6	Lb Area 17.49 17.39	Lb Lift .236 .235	VIv Lift .354 .353			LbSep/Adv 109.2 1.2 Advance	Overlap -21.8	
Cam		Int Close		Exh Ope	nExh Clo	seExh					
Lift	BTDC	ABDC	Dur	BBDC	ATDC	Dur					
Cyl 1 .003 .004 .006 .015 .020 .040 .050	64.7 60.7 51.9 15.4 7.8 -3.7 -8.2 -28.3	105.2 99.8 90.7 51.8 43.9 29.7 24.9 6.8	349.9 340.5 322.6 247.2 231.7 206.0 196.7 158.5	102.5 97.9 88.8 52.1 45.7 31.8 27.1	67.4 62.2 52.0 13.8 4.8 -8.9 -13.6 -31.6	349.8 340.1 320.8 245.9 230.5 202.9 193.5 157.7					
.150	-46.3	-10.7	123.1	-8.1	-49.1	122.8					
.200	-68.9	-32.9	78.2	-30.7	-71.5	77.8	5:				
General Sp Type Deg Ste Lifter (pi For Cyl: Degree Wh Type:	ps: rofile) Type #: neel			n Electron Jser Enten Sol # 180 - 270 -	ed id 1	Centeri Duratio Openin Closing Max Lo Gross V Design	Arm F Valve I line, de in @ .0 g @ .0 g @ .0 bbe Lift Valve L	Lash, in eg ATDC 050" (me 050" (me 50" (me c, in (me Lift, in (r	C (meas.)107.99 eas.) 196.73 eas.) -8.20 eas.) 24.93 eas.) .2359 meas.) .3539 n (meas.) na	1.5 .010 110.43 193.51 27.14 -13.63 .2351	
Standard Options Timing Method Cam Timing Value Cam Timing Value Cam Design Lift for Rating Events			Intake Centerline 108 Custom 1			Advanced Options Plus Version Onlyna Plus Version Onlyna Plus Version Onlyna Plus Version Onlyna			Int	Intake Centerline 108 Custom	
Lifter Bo Cylinder Int or Ex	Angles of LBAs No re Angle #1 s Using LB	1 A 1		n n n	a a	Int or E Lifter B	ers Usin xh LB/ ore An ers Usin	ng LBA; A 2 gle #3 ng LBA;		na na na na na	

Cam Analyzer v4.3 Eng: 719

Calculated Test Results

DELTA CAMSHFT THANKS FOR YOUR BUSINESS Performance Trends (C) 2018

This Report Printed: 10:46 am 06-15-22

Page: 2

Cam Design Layout Specs Cam Design Layout Specs		Lobe Description			
Number Cyls on Cam	8 J-G-I1-E5-E1-I5-J-I2-E6-E2-I6-J-I3-E7-E3-I7-J-I4-E8-E4-I8				
Type of Lobes	Intake and Exhaust	Rotation (viewed from front)	CW		
Intake Lobes per Cylinder	1	Encoder Mounted On	Rear		
Exhaust Lobes per Cylinder	1	Dowel Pin/Keyway Timing from TDC			
Firing Order	1-5-4-2-6-3-7-8	Cam Degrees from TDC	41.5		
Offset ('odd') Firing Cyls. Offset from #1 Offset Crank Degress	No	Direction from TDC	cw		
Lifter/Follower Details ntake Advanced Specs	Cress Contraction of the Contraction	Intake Virtual Follower Specs, cont			
Cam Lobe Base Circle Dia, in	1.1	Valve End Pivot Angle			
Follower Type:	Standard Flat	Valve End Pivot Distance			
Follower Body Diameter, in	.875	Valve End Pivot Radius			
Follower Roller Diameter, in	.75	Cam Location Angle			
Standard Crown Radius, in	60	Cam Location Distance			
ntake Virtual Follower Specs		Valve Stem Distance			
Cam End Pivot Angle		Valve Stem Diameter			
Cam End Pivot Distance		Cam Rotation Direction	CW		
Cam End Pivot Radius		Probe Radius, in			